
Intel Architecture Software Developer’s Manual 41-31

C

C 41

41.1 CALL—Call Procedure

Description
Saves procedure linking information on the stack and branches to the procedure (called procedure)
specified with the destination (target) operand. The target operand specifies the address of the first
instruction in the called procedure. This operand can be an immediate value, a general-purpose
register, or a memory location.

This instruction can be used to execute four different types of calls:

• Near call—A call to a procedure within the current code segment (the segment currently
pointed to by the CS register), sometimes referred to as an intrasegment call.

• Far call—A call to a procedure located in a different segment than the current code segment,
sometimes referred to as an intersegment call.

• Inter-privilege-level far call—A far call to a procedure in a segment at a different privilege
level than that of the currently executing program or procedure.

• Task switch—A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in
protected mode. See the section titled “Calling Procedures Using CALL and RET”, for additional
information on near, far, and inter-privilege-level calls. See Chapter 6, Task Management, in the
Intel Architecture Software Developer’s Manual, Volume 3, for information on performing task
switches with the CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP register (which
contains the offset of the instruction following the CALL instruction) onto the stack (for use later
as a return-instruction pointer). The processor then branches to the address in the current code
segment specified with the target operand. The target operand specifies either an absolute offset in
the code segment (that is an offset from the base of the code segment) or a relative offset (a signed
displacement relative to the current value of the instruction pointer in the EIP register, which points
to the instruction following the CALL instruction). The CS register is not changed on near calls.

Opcode Instruction Description

E8 cw CALL rel16 Call near, relative, displacement relative to next instruction

E8 cd CALL rel32 Call near, relative, displacement relative to next instruction

FF /2 CALL r/m16 Call near, absolute indirect, address given in r/m16

FF /2 CALL r/m32 Call near, absolute indirect, address given in r/m32

9A cd CALL ptr16:16 Call far, absolute, address given in operand

9A cp CALL ptr16:32 Call far, absolute, address given in operand

FF /3 CALL m16:16 Call far, absolute indirect, address given in m16:16

FF /3 CALL m16:32 Call far, absolute indirect, address given in m16:32

41-32 Intel Architecture Software Developer’s Manual

C

For a near call, an absolute offset is specified indirectly in a general-purpose register or a memory
location (r/m16 or r/m32). The operand-size attribute determines the size of the target operand (16
or 32 bits). Absolute offsets are loaded directly into the EIP register. If the operand-size attribute is
16, the upper two bytes of the EIP register are cleared to 0s, resulting in a maximum instruction
pointer size of 16 bits. (When accessing an absolute offset indirectly using the stack pointer [ESP]
as a base register, the base value used is the value of the ESP before the instruction executes.)

A relative offset (rel16 or rel32) is generally specified as a label in assembly code, but at the
machine code level, it is encoded as a signed, 16- or 32-bit immediate value. This value is added to
the value in the EIP register. As with absolute offsets, the operand-size attribute determines the size
of the target operand (16 or 32 bits).

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real-address
or virtual-8086 mode, the processor pushes the current value of both the CS and EIP registers onto
the stack for use as a return-instruction pointer. The processor then performs a “far branch” to the
code segment and offset specified with the target operand for the called procedure. Here the target
operand specifies an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or
indirectly with a memory location (m16:16 or m16:32). With the pointer method, the segment and
offset of the called procedure is encoded in the instruction, using a 4-byte (16-bit operand size) or
6-byte (32-bit operand size) far address immediate. With the indirect method, the target operand
specifies a memory location that contains a 4-byte (16-bit operand size) or 6-byte (32-bit operand
size) far address. The operand-size attribute determines the size of the offset (16 or 32 bits) in the
far address. The far address is loaded directly into the CS and EIP registers. If the operand-size
attribute is 16, the upper two bytes of the EIP register are cleared to 0s.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL
instruction can be used to perform the following three types of far calls:

• Far call to the same privilege level.

• Far call to a different privilege level (inter-privilege level call).

• Task switch (far call to another task).

In protected mode, the processor always uses the segment selector part of the far address to access
the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate, task
gate, or TSS) and access rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege
level is performed. (If the selected code segment is at a different privilege level and the code
segment is non-conforming, a general-protection exception is generated.) A far call to the same
privilege level in protected mode is very similar to one carried out in real-address or virtual-8086
mode. The target operand specifies an absolute far address either directly with a pointer (ptr16:16
or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-size attribute
determines the size of the offset (16 or 32 bits) in the far address. The new code segment selector
and its descriptor are loaded into CS register, and the offset from the instruction is loaded into the
EIP register.

Note that a call gate (described in the next paragraph) can also be used to perform far call to a code
segment at the same privilege level. Using this mechanism provides an extra level of indirection
and is the preferred method of making calls between 16-bit and 32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure being called
must be accessed through a call gate. The segment selector specified by the target operand
identifies the call gate. Here again, the target operand can specify the call gate segment selector
either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16
or m16:32). The processor obtains the segment selector for the new code segment and the new

Intel Architecture Software Developer’s Manual 41-33

C

instruction pointer (offset) from the call gate descriptor. (The offset from the target operand is
ignored when a call gate is used.) On inter-privilege-level calls, the processor switches to the stack
for the privilege level of the called procedure. The segment selector for the new stack segment is
specified in the TSS for the currently running task. The branch to the new code segment occurs
after the stack switch. (Note that when using a call gate to perform a far call to a segment at the
same privilege level, no stack switch occurs.) On the new stack, the processor pushes the segment
selector and stack pointer for the calling procedure’s stack, an (optional) set of parameters from the
calling procedures stack, and the segment selector and instruction pointer for the calling
procedure’s code segment. (A value in the call gate descriptor determines how many parameters to
copy to the new stack.) Finally, the processor branches to the address of the procedure being called
within the new code segment.

Executing a task switch with the CALL instruction, is somewhat similar to executing a call through
a call gate. Here the target operand specifies the segment selector of the task gate for the task being
switched to (and the offset in the target operand is ignored.) The task gate in turn points to the TSS
for the task, which contains the segment selectors for the task’s code and stack segments. The TSS
also contains the EIP value for the next instruction that was to be executed before the task was
suspended. This instruction pointer value is loaded into EIP register so that the task begins
executing again at this next instruction.

The CALL instruction can also specify the segment selector of the TSS directly, which eliminates
the indirection of the task gate. See Chapter 6, Task Management, in the Intel Architecture Software
Developer’s Manual, Volume 3, for detailed information on the mechanics of a task switch.

Note that when you execute at task switch with a CALL instruction, the nested task flag (NT) is set
in the EFLAGS register and the new TSS’s previous task link field is loaded with the old tasks TSS
selector. Code is expected to suspend this nested task by executing an IRET instruction, which,
because the NT flag is set, will automatically use the previous task link to return to the calling task.
(See “Task Linking” in Chapter 6 of the Intel Architecture Software Developer’s Manual, Volume 3,
for more information on nested tasks.) Switching tasks with the CALL instruction differs in this
regard from the JMP instruction which does not set the NT flag and therefore does not expect an
IRET instruction to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code
segments, the calls should be made through a call gate. If the far call is from a 32-bit code segment
to a 16-bit code segment, the call should be made from the first 64 KBytes of the 32-bit code
segment. This is because the operand-size attribute of the instruction is set to 16, so only a 16-bit
return address offset is saved. Also, the call should be made using a 16-bit call gate so that 16-bit
values will be pushed on the stack. See Chapter 16, Mixing 16-Bit and 32-Bit Code, in the Intel
Architecture Software Developer’s Manual, Volume 3, for more information on making calls
between 16-bit and 32-bit code segments.

Operation
IF near call

THEN IF near relative call
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
THEN IF OperandSize = 32

THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP ← EIP + DEST; (* DEST is rel32 *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP ← (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)

FI;
FI;
ELSE (* near absolute call *)

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
IF OperandSize = 32

41-34 Intel Architecture Software Developer’s Manual

C

THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP ← DEST; (* DEST is r/m32 *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP ← DEST AND 0000FFFFH; (* DEST is r/m16 *)

FI;
FI:

FI;

IF far call AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real-address or virtual-8086 mode *)
THEN

IF OperandSize = 32
THEN

IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ← DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP ← DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS ← DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP ← DEST[15:0]; (* DEST is ptr16:16 or [m16:16] *)
EIP ← EIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
FI;

IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual-8086 mode *)
THEN

IF segment selector in target operand null THEN #GP(0); FI;
IF segment selector index not within descriptor table limits

THEN #GP(new code segment selector);
FI;
Read type and access rights of selected segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,

task gate, or TSS THEN #GP(segment selector); FI;
Depending on type and access rights

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(new code segment selector); FI;
IF segment not present THEN #NP(new code segment selector); FI;
IF OperandSize = 32

THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ← DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← DEST(offset);

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS ← DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← DEST(offset) AND 0000FFFFH; (* clear upper 16 bits *)

FI;
END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL ≠ CPL) THEN #GP(new code segment selector); FI;
IF segment not present THEN #NP(new code segment selector); FI;
IF stack not large enough for return address THEN #SS(0); FI;
tempEIP ← DEST(offset)
IF OperandSize=16

THEN
tempEIP ← tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF tempEIP outside code segment limit THEN #GP(0); FI;
IF OperandSize = 32

Intel Architecture Software Developer’s Manual 41-35

C

THEN
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ← DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE (* OperandSize = 16 *)
Push(CS);
Push(IP);
CS ← DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

FI;
END;

CALL-GATE:
IF call gate DPL < CPL or RPL THEN #GP(call gate selector); FI;
IF call gate not present THEN #NP(call gate selector); FI;
IF call gate code-segment selector is null THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor DPL > CPL

THEN #GP(code segment selector); FI;
IF code segment not present THEN #NP(new code segment selector); FI;
IF code segment is non-conforming AND DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS

THEN
TSSstackAddress ← new code segment (DPL ∗ 8) + 4
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
newSS ← TSSstackAddress + 4;
newESP ← stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress ← new code segment (DPL ∗ 4) + 2
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
newESP ← TSSstackAddress;
newSS ← TSSstackAddress + 2;

FI;
IF stack segment selector is null THEN #TS(stack segment selector); FI;
IF stack segment selector index is not within its descriptor table limits

THEN #TS(SS selector); FI
Read code segment descriptor;
IF stack segment selector’s RPL ≠ DPL of code segment

OR stack segment DPL ≠ DPL of code segment
OR stack segment is not a writable data segment

THEN #TS(SS selector); FI
IF stack segment not present THEN #SS(SS selector); FI;
IF CallGateSize = 32

THEN
IF stack does not have room for parameters plus 16 bytes

THEN #SS(SS selector); FI;
IF CallGate(InstructionPointer) not within code segment limit THEN #GP(0); FI;
SS ← newSS;
(* segment descriptor information also loaded *)
ESP ← newESP;
CS:EIP ← CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 8 bytes

THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not within code segment limit

THEN #GP(0); FI;
SS ← newSS;
(* segment descriptor information also loaded *)
ESP ← newESP;
CS:IP ← CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

41-36 Intel Architecture Software Developer’s Manual

C

FI;
CPL ← CodeSegment(DPL)

IF task gate not present
THEN #NP(task gate selector);

FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits
THEN #GP(TSS selector);

FI;
Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);

FI;
IF TSS not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
OR TSS descriptor indicates TSS not available

THEN #GP(TSS selector);
FI;
IF TSS is not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (with nesting) to TSS
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;

Flags Affected
All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions
#GP(0) If target offset in destination operand is beyond the new code segment limit.

If the segment selector in the destination operand is null.

If the code segment selector in the gate is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#GP(selector) If code segment or gate or TSS selector index is outside descriptor table limits.

If the segment descriptor pointed to by the segment selector in the destination
operand is not for a conforming-code segment, nonconforming-code segment,
call gate, task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL or the
RPL for the segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the
CPL or than the RPL of the call-gate, task-gate, or TSS’s segment selector.

Intel Architecture Software Developer’s Manual 41-37

C

If the segment descriptor for a segment selector from a call gate does not
indicate it is a code segment.

If the segment selector from a call gate is beyond the descriptor table limits.

If the DPL for a code-segment obtained from a call gate is greater than the CPL.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, parameters, or stack segment pointer onto the
stack exceeds the bounds of the stack segment, when no stack switch occurs.

If a memory operand effective address is outside the SS segment limit.

#SS(selector) If pushing the return address, parameters, or stack segment pointer onto the
stack exceeds the bounds of the stack segment, when a stack switch occurs.

If the SS register is being loaded as part of a stack switch and the segment
pointed to is marked not present.

If stack segment does not have room for the return address, parameters, or stack
segment pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task gate, or TSS is
not present.

#TS(selector) If the new stack segment selector and ESP are beyond the end of the TSS.

If the new stack segment selector is null.

If the RPL of the new stack segment selector in the TSS is not equal to the DPL
of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is not equal to
the DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and alignment
checking is enabled.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the target offset is beyond the code segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the target offset is beyond the code segment limit.

#PF(fault-code) If a page fault occurs.

41-38 Intel Architecture Software Developer’s Manual

C

#AC(0) If an unaligned memory access occurs when alignment checking is enabled.

41.2 CBW/CWDE—Convert Byte to Word/Convert Word
to Doubleword

Description
Double the size of the source operand by means of sign extension (see “Sign Extension”). The
CBW (convert byte to word) instruction copies the sign (bit 7) in the source operand into every bit
in the AH register. The CWDE (convert word to doubleword) instruction copies the sign (bit 15) of
the word in the AX register into the higher 16 bits of the EAX register.

The CBW and CWDE mnemonics reference the same opcode. The CBW instruction is intended for
use when the operand-size attribute is 16 and the CWDE instruction for when the operand-size
attribute is 32. Some assemblers may force the operand size to 16 when CBW is used and to 32
when CWDE is used. Others may treat these mnemonics as synonyms (CBW/CWDE) and use the
current setting of the operand-size attribute to determine the size of values to be converted,
regardless of the mnemonic used.

The CWDE instruction is different from the CWD (convert word to double) instruction. The CWD
instruction uses the DX:AX register pair as a destination operand; whereas, the CWDE instruction
uses the EAX register as a destination.

Operation
IF OperandSize = 16 (* instruction = CBW *)

THEN AX ← SignExtend(AL);
ELSE (* OperandSize = 32, instruction = CWDE *)

EAX ← SignExtend(AX);
FI;

Flags Affected
None.

Exceptions (All Operating Modes)
None.

41.3 CDQ—Convert Double to Quad

See entry for CWD/CDQ — Convert Word to Doubleword/Convert Doubleword to Quadword.

Opcode Instruction Description

98 CBW AX ← sign-extend of AL

98 CWDE EAX ← sign-extend of AX

Intel Architecture Software Developer’s Manual 41-39

C

41.4 CLC—Clear Carry Flag

Description
Clears the CF flag in the EFLAGS register.

Operation
CF ← 0;

Flags Affected
The CF flag is cleared to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
None.

41.5 CLD—Clear Direction Flag

Description
Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations
increment the index registers (ESI and/or EDI).

Operation
DF ← 0;

Flags Affected
The DF flag is cleared to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
None.

Opcode Instruction Description

F8 CLC Clear CF flag

Opcode Instruction Description

FC CLD Clear DF flag

41-40 Intel Architecture Software Developer’s Manual

C

41.6 CLI—Clear Interrupt Flag

Description
Clears the IF flag in the EFLAGS register. No other flags are affected. Clearing the IF flag causes
the processor to ignore maskable external interrupts. The IF flag and the CLI and STI instruction
have no affect on the generation of exceptions and NMI interrupts.

The following decision table indicates the action of the CLI instruction (bottom of the table)
depending on the processor’s mode of operating and the CPL and IOPL of the currently running
program or procedure (top of the table).

NOTES:
1. XDon’t care
2. NAction in column 1 not taken
3. YAction in column 1 taken

Operation
IF PE = 0 (* Executing in real-address mode *)

THEN
IF ← 0;

ELSE
IF VM = 0 (* Executing in protected mode *)

THEN
IF CPL ≤ IOPL

THEN
IF ← 0;

ELSE
#GP(0);

FI;
FI;

ELSE (* Executing in Virtual-8086 mode *)
IF IOPL = 3

THEN
IF ← 0

ELSE
#GP(0);

FI;
FI;

FI;

Flags Affected
The IF is cleared to 0 if the CPL is equal to or less than the IOPL; otherwise, it is not affected. The
other flags in the EFLAGS register are unaffected.

Opcode Instruction Description

FA CLI Clear interrupt flag; interrupts disabled when interrupt
flag cleared

PE = 0 1 1 1 1

VM = X 0 X 0 1

CPL X ≤ IOPL X > IOPL X

IOPL X X = 3 X < 3

IF ← 0 Y Y Y N N

#GP(0) N N N Y Y

Intel Architecture Software Developer’s Manual 41-41

C

Protected Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program

or procedure.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program

or procedure.

41.7 CLTS—Clear Task-Switched Flag in CR0

Description
Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for use in
operating-system procedures. It is a privileged instruction that can only be executed at a CPL of 0.
It is allowed to be executed in real-address mode to allow initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to synchronize the
saving of FPU context in multitasking applications. See the description of the TS flag in the section
titled “Control Registers” in Chapter 2 of the Intel Architecture Software Developer’s Manual,
Volume 3, for more information about this flag.

Operation
CR0(TS) ← 0;

Flags Affected
The TS flag in CR0 register is cleared.

Protected Mode Exceptions
#GP(0) If the CPL is greater than 0.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If the CPL is greater than 0.

Opcode Instruction Description

0F 06 CLTS Clears TS flag in CR0

41-42 Intel Architecture Software Developer’s Manual

C

41.8 CMC—Complement Carry Flag

Description
Complements the CF flag in the EFLAGS register.

Operation
CF ← NOT CF;

Flags Affected
The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF flags are
unaffected.

Exceptions (All Operating Modes)
None.

41.9 CMOVcc—Conditional Move

Opcode Instruction Description

F5 CMC Complement CF flag

Opcode Instruction Description

0F 47 /r CMOVA r16, r/m16 Move if above (CF=0 and ZF=0)

0F 47 /r CMOVA r32, r/m32 Move if above (CF=0 and ZF=0)

0F 43 /r CMOVAE r16, r/m16 Move if above or equal (CF=0)

0F 43 /r CMOVAE r32, r/m32 Move if above or equal (CF=0)

0F 42 /r CMOVB r16, r/m16 Move if below (CF=1)

0F 42 /r CMOVB r32, r/m32 Move if below (CF=1)

0F 46 /r CMOVBE r16, r/m16 Move if below or equal (CF=1 or ZF=1)

0F 46 /r CMOVBE r32, r/m32 Move if below or equal (CF=1 or ZF=1)

0F 42 /r CMOVC r16, r/m16 Move if carry (CF=1)

0F 42 /r CMOVC r32, r/m32 Move if carry (CF=1)

0F 44 /r CMOVE r16, r/m16 Move if equal (ZF=1)

0F 44 /r CMOVE r32, r/m32 Move if equal (ZF=1)

0F 4F /r CMOVG r16, r/m16 Move if greater (ZF=0 and SF=OF)

0F 4F /r CMOVG r32, r/m32 Move if greater (ZF=0 and SF=OF)

0F 4D /r CMOVGE r16, r/m16 Move if greater or equal (SF=OF)

0F 4D /r CMOVGE r32, r/m32 Move if greater or equal (SF=OF)

0F 4C /r CMOVL r16, r/m16 Move if less (SF<>OF)

0F 4C /r CMOVL r32, r/m32 Move if less (SF<>OF)

0F 4E /r CMOVLE r16, r/m16 Move if less or equal (ZF=1 or SF<>OF)

0F 4E /r CMOVLE r32, r/m32 Move if less or equal (ZF=1 or SF<>OF)

0F 46 /r CMOVNA r16, r/m16 Move if not above (CF=1 or ZF=1)

0F 46 /r CMOVNA r32, r/m32 Move if not above (CF=1 or ZF=1)

0F 42 /r CMOVNAE r16, r/m16 Move if not above or equal (CF=1)

Intel Architecture Software Developer’s Manual 41-43

C

Description
The CMOVcc instructions check the state of one or more of the status flags in the EFLAGS
register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are in a specified state
(or condition). A condition code (cc) is associated with each instruction to indicate the condition
being tested for. If the condition is not satisfied, a move is not performed and execution continues
with the instruction following the CMOVcc instruction.

0F 42 /r CMOVNAE r32, r/m32 Move if not above or equal (CF=1)

0F 43 /r CMOVNB r16, r/m16 Move if not below (CF=0)

0F 43 /r CMOVNB r32, r/m32 Move if not below (CF=0)

0F 47 /r CMOVNBE r16, r/m16 Move if not below or equal (CF=0 and ZF=0)

0F 47 /r CMOVNBE r32, r/m32 Move if not below or equal (CF=0 and ZF=0)

0F 43 /r CMOVNC r16, r/m16 Move if not carry (CF=0)

0F 43 /r CMOVNC r32, r/m32 Move if not carry (CF=0)

0F 45 /r CMOVNE r16, r/m16 Move if not equal (ZF=0)

0F 45 /r CMOVNE r32, r/m32 Move if not equal (ZF=0)

0F 4E /r CMOVNG r16, r/m16 Move if not greater (ZF=1 or SF<>OF)

0F 4E /r CMOVNG r32, r/m32 Move if not greater (ZF=1 or SF<>OF)

0F 4C /r CMOVNGE r16, r/m16 Move if not greater or equal (SF<>OF)

0F 4C /r CMOVNGE r32, r/m32 Move if not greater or equal (SF<>OF)

0F 4D /r CMOVNL r16, r/m16 Move if not less (SF=OF)

0F 4D /r CMOVNL r32, r/m32 Move if not less (SF=OF)

0F 4F /r CMOVNLE r16, r/m16 Move if not less or equal (ZF=0 and SF=OF)

0F 4F /r CMOVNLE r32, r/m32 Move if not less or equal (ZF=0 and SF=OF)

Opcode Instruction Description

0F 41 /r CMOVNO r16, r/m16 Move if not overflow (OF=0)

0F 41 /r CMOVNO r32, r/m32 Move if not overflow (OF=0)

0F 4B /r CMOVNP r16, r/m16 Move if not parity (PF=0)

0F 4B /r CMOVNP r32, r/m32 Move if not parity (PF=0)

0F 49 /r CMOVNS r16, r/m16 Move if not sign (SF=0)

0F 49 /r CMOVNS r32, r/m32 Move if not sign (SF=0)

0F 45 /r CMOVNZ r16, r/m16 Move if not zero (ZF=0)

0F 45 /r CMOVNZ r32, r/m32 Move if not zero (ZF=0)

0F 40 /r CMOVO r16, r/m16 Move if overflow (OF=0)

0F 40 /r CMOVO r32, r/m32 Move if overflow (OF=0)

0F 4A /r CMOVP r16, r/m16 Move if parity (PF=1)

0F 4A /r CMOVP r32, r/m32 Move if parity (PF=1)

0F 4A /r CMOVPE r16, r/m16 Move if parity even (PF=1)

0F 4A /r CMOVPE r32, r/m32 Move if parity even (PF=1)

0F 4B /r CMOVPO r16, r/m16 Move if parity odd (PF=0)

0F 4B /r CMOVPO r32, r/m32 Move if parity odd (PF=0)

0F 48 /r CMOVS r16, r/m16 Move if sign (SF=1)

0F 48 /r CMOVS r32, r/m32 Move if sign (SF=1)

0F 44 /r CMOVZ r16, r/m16 Move if zero (ZF=1)

0F 44 /r CMOVZ r32, r/m32 Move if zero (ZF=1)

41-44 Intel Architecture Software Developer’s Manual

C

These instructions can move a 16- or 32-bit value from memory to a general-purpose register or
from one general-purpose register to another. Conditional moves of 8-bit register operands are not
supported.

The conditions for each CMOVcc mnemonic is given in the description column of the above table.
The terms “less” and “greater” are used for comparisons of signed integers and the terms “above”
and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the CMOVA (conditional move if above)
instruction and the CMOVNBE (conditional move if not below or equal) instruction are alternate
mnemonics for the opcode 0F 47H.

The CMOVcc instructions are new for the Pentium Pro processor family; however, they may not
be supported by all the processors in the family. Software can determine if the CMOVcc
instructions are supported by checking the processor’s feature information with the CPUID
instruction (see “CPUID—CPU Identification” in this chapter).

Operation
temp ← DEST
IF condition TRUE

THEN
DEST ← SRC

ELSE
DEST ← temp

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Intel Architecture Software Developer’s Manual 41-45

C

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

41.10 CMP—Compare Two Operands

Description
Compares the first source operand with the second source operand and sets the status flags in the
EFLAGS register according to the results. The comparison is performed by subtracting the second
operand from the first operand and then setting the status flags in the same manner as the SUB
instruction. When an immediate value is used as an operand, it is sign-extended to the length of the
first operand.

The CMP instruction is typically used in conjunction with a conditional jump (Jcc), condition
move (CMOVcc), or SETcc instruction. The condition codes used by the Jcc, CMOVcc, and SETcc
instructions are based on the results of a CMP instruction. “EFLAGS Cross-Reference and
Condition Codes” shows the relationship of the status flags and the condition codes.

Operation
temp ← SRC1 − SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

3C ib CMP AL, imm8 Compare imm8 with AL

3D iw CMP AX, imm16 Compare imm16 with AX

3D id CMP EAX, imm32 Compare imm32 with EAX

80 /7 ib CMP r/m8, imm8 Compare imm8 with r/m8

81 /7 iw CMP r/m16, imm16 Compare imm16 with r/m16

81 /7 id CMP r/m32,imm32 Compare imm32 with r/m32

83 /7 ib CMP r/m16,imm8 Compare imm8 with r/m16

83 /7 ib CMP r/m32,imm8 Compare imm8 with r/m32

38 /r CMP r/m8,r8 Compare r8 with r/m8

39 /r CMP r/m16,r16 Compare r16 with r/m16

39 /r CMP r/m32,r32 Compare r32 with r/m32

3A /r CMP r8,r/m8 Compare r/m8 with r8

3B /r CMP r16,r/m16 Compare r/m16 with r16

3B /r CMP r32,r/m32 Compare r/m32 with r32

41-46 Intel Architecture Software Developer’s Manual

C

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

41.11 CMPS/CMPSB/CMPSW/CMPSD—Compare String
Operands

Description
Compares the byte, word, or double word specified with the first source operand with the byte,
word, or double word specified with the second source operand and sets the status flags in the
EFLAGS register according to the results. Both the source operands are located in memory. The
address of the first source operand is read from either the DS:ESI or the DS:SI registers (depending
on the address-size attribute of the instruction, 32 or 16, respectively). The address of the second
source operand is read from either the ES:EDI or the ES:DI registers (again depending on the
address-size attribute of the instruction). The DS segment may be overridden with a segment
override prefix, but the ES segment cannot be overridden.

Opcode Instruction Description

A6 CMPS m8, m8 Compares byte at address DS:(E)SI with byte at address
ES:(E)DI and sets the status flags accordingly

A7 CMPS m16, m16 Compares word at address DS:(E)SI with word at address
ES:(E)DI and sets the status flags accordingly

A7 CMPS m32, m32 Compares doubleword at address DS:(E)SI with doubleword
at address ES:(E)DI and sets the status flags accordingly

A6 CMPSB Compares byte at address DS:(E)SI with byte at address
ES:(E)DI and sets the status flags accordingly

A7 CMPSW Compares word at address DS:(E)SI with word at address
ES:(E)DI and sets the status flags accordingly

A7 CMPSD Compares doubleword at address DS:(E)SI with doubleword
at address ES:(E)DI and sets the status flags accordingly

Intel Architecture Software Developer’s Manual 41-47

C

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form
and the “no-operands” form. The explicit-operands form (specified with the CMPS mnemonic)
allows the two source operands to be specified explicitly. Here, the source operands should be
symbols that indicate the size and location of the source values. This explicit-operands form is
provided to allow documentation; however, note that the documentation provided by this form can
be misleading. That is, the source operand symbols must specify the correct type (size) of the
operands (bytes, words, or doublewords), but they do not have to specify the correct location. The
locations of the source operands are always specified by the DS:(E)SI and ES:(E)DI registers,
which must be loaded correctly before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
CMPS instructions. Here also the DS:(E)SI and ES:(E)DI registers are assumed by the processor to
specify the location of the source operands. The size of the source operands is selected with the
mnemonic: CMPSB (byte comparison), CMPSW (word comparison), or CMPSD (doubleword
comparison).

After the comparison, the (E)SI and (E)DI registers are incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI and
(E)DI register are incremented; if the DF flag is 1, the (E)SI and (E)DI registers are decremented.)
The registers are incremented or decremented by 1 for byte operations, by 2 for word operations, or
by 4 for doubleword operations.

The CMPS, CMPSB, CMPSW, and CMPSD instructions can be preceded by the REP prefix for
block comparisons of ECX bytes, words, or doublewords. More often, however, these instructions
will be used in a LOOP construct that takes some action based on the setting of the status flags
before the next comparison is made. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat String
Operation Prefix” in this chapter for a description of the REP prefix.

Operation
temp ←SRC1 − SRC2;
SetStatusFlags(temp);
IF (byte comparison)

THEN IF DF = 0
THEN

(E)SI ← (E)SI + 1;
(E)DI ← (E)DI + 1;

ELSE
(E)SI ← (E)SI – 1;
(E)DI ← (E)DI – 1;

FI;
ELSE IF (word comparison)

THEN IF DF = 0
(E)SI ← (E)SI + 2;
(E)DI ← (E)DI + 2;

ELSE
(E)SI ← (E)SI – 2;
(E)DI ← (E)DI – 2;

FI;
ELSE (* doubleword comparison*)

THEN IF DF = 0
(E)SI ← (E)SI + 4;
(E)DI ← (E)DI + 4;

ELSE
(E)SI ← (E)SI – 4;
(E)DI ← (E)DI – 4;

FI;
FI;

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the comparison.

41-48 Intel Architecture Software Developer’s Manual

C

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

41.12 CMPXCHG—Compare and Exchange

Description
Compares the value in the AL, AX, or EAX register (depending on the size of the operand) with
the first operand (destination operand). If the two values are equal, the second operand (source
operand) is loaded into the destination operand. Otherwise, the destination operand is loaded into
the AL, AX, or EAX register.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.
To simplify the interface to the processor’s bus, the destination operand receives a write cycle
without regard to the result of the comparison. The destination operand is written back if the
comparison fails; otherwise, the source operand is written into the destination. (The processor
never produces a locked read without also producing a locked write.)

Opcode Instruction Description

0F B0/r CMPXCHG r/m8,r8 Compare AL with r/m8. If equal, ZF is set and r8 is loaded
into r/m8. Else, clear ZF and load r/m8 into AL.

0F B1/r CMPXCHG r/m16,r16 Compare AX with r/m16. If equal, ZF is set and r16 is
loaded into r/m16. Else, clear ZF and load r/m16 into AL

0F B1/r CMPXCHG r/m32,r32 Compare EAX with r/m32. If equal, ZF is set and r32 is
loaded into r/m32. Else, clear ZF and load r/m32 into AL

Intel Architecture Software Developer’s Manual 41-49

C

Intel Architecture Compatibility
This instruction is not supported on Intel processors earlier than the Intel486 processors.

Operation
(* accumulator = AL, AX, or EAX, depending on whether *)
(* a byte, word, or doubleword comparison is being performed*)
IF accumulator = DEST

THEN
ZF ← 1
DEST ← SRC

ELSE
ZF ← 0
accumulator ← DEST

FI;

Flags Affected
The ZF flag is set if the values in the destination operand and register AL, AX, or EAX are equal;
otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to the results of the
comparison operation.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

41-50 Intel Architecture Software Developer’s Manual

C

41.13 CMPXCHG8B—Compare and Exchange 8 Bytes

Description
Compares the 64-bit value in EDX:EAX with the operand (destination operand). If the values are
equal, the 64-bit value in ECX:EBX is stored in the destination operand. Otherwise, the value in
the destination operand is loaded into EDX:EAX. The destination operand is an 8-byte memory
location. For the EDX:EAX and ECX:EBX register pairs, EDX and ECX contain the high-order 32
bits and EAX and EBX contain the low-order 32 bits of a 64-bit value.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.
To simplify the interface to the processor’s bus, the destination operand receives a write cycle
without regard to the result of the comparison. The destination operand is written back if the
comparison fails; otherwise, the source operand is written into the destination. (The processor
never produces a locked read without also producing a locked write.)

Intel Architecture Compatibility
This instruction is not supported on Intel processors earlier than the Pentium processors.

Operation
IF (EDX:EAX = DEST)

ZF ← 1
DEST ← ECX:EBX

ELSE
ZF ← 0
EDX:EAX ← DEST

Flags Affected
The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared. The
CF, PF, AF, SF, and OF flags are unaffected.

Protected Mode Exceptions
#UD If the destination operand is not a memory location.

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Opcode Instruction Description

0F C7 /1 m64 CMPXCHG8B m64
Compare EDX:EAX with m64. If equal, set ZF and load
ECX:EBX into m64. Else, clear ZF and load m64 into
EDX:EAX.

Intel Architecture Software Developer’s Manual 41-51

C

Real-Address Mode Exceptions
#UD If the destination operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#UD If the destination operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

41.14 CPUID—CPU Identification

Description
Provides processor identification information in registers EAX, EBX, ECX, and EDX. This
information identifies Intel as the vendor, gives the family, model, and stepping of processor,
feature information, and cache information. An input value loaded into the EAX register
determines what information is returned, as shown in Table 41-1.

Opcode Instruction Description

0F A2 CPUID EAX ← Processor identification information

Table 41-1. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

0

EAX

EBX

ECX

EDX

Maximum CPUID Input Value (2 for the Pentium® Pro processor and 1 for
the Pentium processor and the later versions of Intel486™ processor that
support the CPUID instruction).

“Genu”

“ntel”

“ineI”

1

EAX

EBX

ECX

EDX

Version Information (Type, Family, Model, and Stepping ID)

Reserved

Reserved

Feature Information

2

EAX

EBX

ECX

EDX

Cache and TLB Information

Cache and TLB Information

Cache and TLB Information

Cache and TLB Information

41-52 Intel Architecture Software Developer’s Manual

C

The CPUID instruction can be executed at any privilege level to serialize instruction execution.
Serializing instruction execution guarantees that any modifications to flags, registers, and memory
for previous instructions are completed before the next instruction is fetched and executed (see
“Serializing Instructions” in Chapter 7 of the Intel Architecture Software Developer’s Manual,
Volume 3).

When the input value in register EAX is 0, the processor returns the highest value the CPUID
instruction recognizes in the EAX register (see Table 41-1). A vendor identification string is
returned in the EBX, EDX, and ECX registers. For Intel processors, the vendor identification string
is “GenuineIntel” as follows:
EBX ← 756e6547h (* "Genu", with G in the low nibble of BL *)
EDX ← 49656e69h (* "ineI", with i in the low nibble of DL *)
ECX ← 6c65746eh (* "ntel", with n in the low nibble of CL *)

When the input value is 1, the processor returns version information in the EAX register and
feature information in the EDX register (see Figure 41-1).

The version information consists of an Intel Architecture family identifier, a model identifier, a
stepping ID, and a processor type. The model, family, and processor type for the first processor in
the Intel Pentium Pro family is as follows:

• Model—0001B

• Family—0110B

• Processor Type—00B

Figure 41-1. Version and Feature Information in Registers EAX and EDX

31

APIC—APIC on Chip
CXS—CMPXCHG8B Inst.
MCE—Machine Check Exception
PAE—Physical Address Extensions
MSR—RDMSR and WRMSR Support
TSC—Time Stamp Counter

MTRR—Mem. Type Range Reg.

CMOV—Cond. Move/Cmp. Inst.
MCA—Machine Check Arch.

15 1314 12 9 8 7 6 5 4 3 2 1 0

PGE—PTE Global Bit

PSE—Page Size Extensions
DE—Debugging Extensions
VME—Virtual-8086 Mode Enhancement
FPU—FPU on Chip

Reserved

EDX

31 12 11 8 7 4 3 0

EAX

Family (0110B for the Pentium® Pro Processor Family)
Model (Beginning with 0001B)

11 1016

1314

Processor Type

ModelFamily
Stepping

ID

23

MMX™ Technology

Intel Architecture Software Developer’s Manual 41-53

C

See AP-485, Intel Processor Identification and the CPUID Instruction (Order Number 241618),
the Intel Pentium® Pro Processor Specification Update (Order Number 242689), and the Intel
Pentium® Processor Specification Update (Order Number 242480) for more information on
identifying earlier Intel Architecture processors.

The available processor types are given in Table 41-2. Intel releases information on stepping IDs as
needed.

NOTE: * Not applicable to Intel386™ and Intel486™ processors.

Table 41-3 shows the encoding of the feature flags in the EDX register. A feature flag set to 1
indicates the corresponding feature is supported. Software should identify Intel as the vendor to
properly interpret the feature flags.

Table 41-2. Processor Type Field

Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor * 10B

Intel reserved. 11B

41-54 Intel Architecture Software Developer’s Manual

C

Table 41-3. Feature Flags Returned in EDX Register (Sheet 1 of 2)

Bit Feature Description

0 FPU—Floating-Point Unit
on Chip

Processor contains an FPU and executes the Intel 387
instruction set.

1 VME—Virtual-8086 Mode
Enhancements

Processor supports the following virtual-8086 mode
enhancements:

• CR4.VME bit enables virtual-8086 mode extensions.

• CR4.PVI bit enables protected-mode virtual interrupts.

• Expansion of the TSS with the software indirection bitmap.

• EFLAGS.VIF bit (virtual interrupt flag).

• EFLAGS.VIP bit (virtual interrupt pending flag).

2 DE—Debugging
Extensions

Processor supports I/O breakpoints, including the CR4.DE bit
for enabling debug extensions and optional trapping of access
to the DR4 and DR5 registers.

3 PSE—Page Size
Extensions

Processor supports 4-Mbyte pages, including the CR4.PSE bit
for enabling page size extensions, the modified bit in page
directory entries (PDEs), page directory entries, and page table
entries (PTEs).

4 TSC—Time Stamp
Counter

Processor supports the RDTSC (read time stamp counter)
instruction, including the CR4.TSD bit that, along with the CPL,
controls whether the time stamp counter can be read.

5 MSR—Model Specific
Registers

Processor supports the RDMSR (read model-specific register)
and WRMSR (write model-specific register) instructions.

6 PAE—Physical Address
Extension

Processor supports physical addresses greater than 32 bits,
the extended page-table-entry format, an extra level in the
page translation tables, and 2-MByte pages. The CR4.PAE bit
enables this feature. The number of address bits is
implementation specific. The Pentium® Pro processor supports
36 bits of addressing when the PAE bit is set.

7 MCE—Machine Check
Exception

Processor supports the CR4.MCE bit, enabling machine check
exceptions. However, this feature does not define the model-
specific implementations of machine-check error logging,
reporting, or processor shutdowns. Machine-check exception
handlers might have to check the processor version to do
model-specific processing of the exception or check for the
presence of the standard machine-check feature.

Intel Architecture Software Developer’s Manual 41-55

C

When the input value is 2, the processor returns information about the processor’s internal caches
and TLBs in the EAX, EBX, ECX, and EDX registers. The encoding of these registers is as
follows:

• The least-significant byte in register EAX (register AL) indicates the number of times the
CPUID instruction must be executed with an input value of 2 to get a complete description of
the processor’s caches and TLBs. The Pentium® Pro family of processors will return a 1.

• The most significant bit (bit 31) of each register indicates whether the register contains valid
information (cleared to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte descriptors.
Table 41-4 shows the encoding of these descriptors.

8 CX8—CMPXCHG8B
Instruction

Processor supports the CMPXCHG8B (compare and exchange
8 bytes) instruction.

9 APIC
Processor contains an on-chip Advanced Programmable
Interrupt Controller (APIC) and it has been enabled and is
available for use.

10,11 Reserved

12 MTRR—Memory Type
Range Registers

Processor supports machine-specific memory-type range
registers (MTRRs). The MTRRs contains bit fields that indicate
the processor’s MTRR capabilities, including which memory
types the processor supports, the number of variable MTRRs
the processor supports, and whether the processor supports
fixed MTRRs.

13 PGE—PTE Global Flag

Processor supports the CR4.PGE flag enabling the global bit in
both PTDEs and PTEs. These bits are used to indicate
translation lookaside buffer (TLB) entries that are common to
different tasks and need not be flushed when control register
CR3 is written.

14 MCA—Machine Check
Architecture

Processor supports the MCG_CAP (machine check global
capability) MSR. The MCG_CAP register indicates how many
banks of error reporting MSRs the processor supports.

15
CMOV—Conditional
Move and Compare
Instructions

Processor supports the CMOVcc instruction and, if the FPU
feature flag (bit 0) is also set, supports the FCMOVcc and
FCOMI instructions.

16-22 Reserved

23 MMX™ Technology

Processor supports the MMX instruction set. These instructions
operate in parallel on multiple data elements (8 bytes, 4 words,
or 2 doublewords) packed into quadword registers or memory
locations.

24-31 Reserved

Table 41-3. Feature Flags Returned in EDX Register (Sheet 2 of 2)

Bit Feature Description

41-56 Intel Architecture Software Developer’s Manual

C

The first member of the Pentium Pro processor family will return the following information about
caches and TLBs when the CPUID instruction is executed with an input value of 2:

EAX 03 02 01 01H
EBX 0H
ECX 0H
EDX 06 04 0A 42H

These values are interpreted as follows:

• The least-significant byte (byte 0) of register EAX is set to 01H, indicating that the CPUID
instruction needs to be executed only once with an input value of 2 to retrieve complete
information about the processor’s caches and TLBs.

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0,
indicating that each register contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor contains the following:

— 01H—A 32-entry instruction TLB (4-way set associative) for mapping 4-KByte pages.

— 02H—A 4-entry instruction TLB (4-way set associative) for mapping 4-MByte pages.

— 03H—A 64-entry data TLB (4-way set associative) for mapping 4-KByte pages.

• The descriptors in registers EBX and ECX are valid, but contain null descriptors.

• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor contains the following:

— 42H—A 256-KByte unified cache (the L2 cache), 4-way set associative, with a 32-byte
cache line size.

— 0AH—An 8-KByte data cache (the L1 data cache), 2-way set associative, with a 32-byte
cache line size.

— 04H—An 8-entry data TLB (4-way set associative) for mapping 4M-byte pages.

Table 41-4. Encoding of Cache and TLB Descriptors

Descriptor Value Cache or TLB Description

00H Null descriptor

01H Instruction TLB: 4K-Byte Pages, 4-way set associative, 32 entries

02H Instruction TLB: 4M-Byte Pages, 4-way set associative, 4 entries

03H Data TLB: 4K-Byte Pages, 4-way set associative, 64 entries

04H Data TLB: 4M-Byte Pages, 4-way set associative, 8 entries

06H Instruction cache: 8K Bytes, 4-way set associative, 32 byte line size

08H Instruction cache: 16K Bytes, 4-way set associative, 32 byte line size

0AH Data cache: 8K Bytes, 2-way set associative, 32 byte line size

0CH Data cache: 16K Bytes, 2-way set associative, 32 byte line size

41H Unified cache: 128K Bytes, 4-way set associative, 32 byte line size

42H Unified cache: 256K Bytes, 4-way set associative, 32 byte line size

43H Unified cache: 512K Bytes, 4-way set associative, 32 byte line size

44H Unified cache: 1M Byte, 4-way set associative, 32 byte line size

Intel Architecture Software Developer’s Manual 41-57

C

— 06H—An 8-KByte instruction cache (the L1 instruction cache), 4-way set associative,
with a 32-byte cache line size.

Intel Architecture Compatibility
The CPUID instruction is not supported in early models of the Intel486 processor or in any Intel
Architecture processor earlier than the Intel486 processor. The ID flag in the EFLAGS register can
be used to determine if this instruction is supported. If a procedure is able to set or clear this flag,
the CPUID is supported by the processor running the procedure.

Operation
CASE (EAX) OF

EAX = 0:
EAX ← highest input value understood by CPUID; (* 2 for Pentium Pro processor *)
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1:

EAX[3:0] ← Stepping ID;
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor type;
EAX[31:12] ← Reserved;
EBX ← Reserved;
ECX ← Reserved;
EDX ← Feature flags; (* See Figure 41-1 *)

BREAK;
EAX = 2:

EAX ← Cache and TLB information;
 EBX ← Cache and TLB information;
 ECX ← Cache and TLB information;

EDX ← Cache and TLB information;
BREAK;
DEFAULT: (* EAX > highest value recognized by CPUID *)

EAX ← reserved, undefined;
EBX ← reserved, undefined;
ECX ← reserved, undefined;
EDX ← reserved, undefined;

BREAK;
ESAC;

Flags Affected
None.

Exceptions (All Operating Modes)
None.

41.15 CWD/CDQ—Convert Word to Doubleword/Convert
Doubleword
to Quadword

Opcode Instruction Description

99 CWD DX:AX ← sign-extend of AX

99 CDQ EDX:EAX ← sign-extend of EAX

41-58 Intel Architecture Software Developer’s Manual

C

Description
Doubles the size of the operand in register AX or EAX (depending on the operand size) by means
of sign extension and stores the result in registers DX:AX or EDX:EAX, respectively. The CWD
instruction copies the sign (bit 15) of the value in the AX register into every bit position in the DX
register (see“Sign Extension”). The CDQ instruction copies the sign (bit 31) of the value in the
EAX register into every bit position in the EDX register.

The CWD instruction can be used to produce a doubleword dividend from a word before a word
division, and the CDQ instruction can be used to produce a quadword dividend from a doubleword
before doubleword division.

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is intended for
use when the operand-size attribute is 16 and the CDQ instruction for when the operand-size
attribute is 32. Some assemblers may force the operand size to 16 when CWD is used and to 32
when CDQ is used. Others may treat these mnemonics as synonyms (CWD/CDQ) and use the
current setting of the operand-size attribute to determine the size of values to be converted,
regardless of the mnemonic used.

Operation
IF OperandSize = 16 (* CWD instruction *)

THEN DX ← SignExtend(AX);
ELSE (* OperandSize = 32, CDQ instruction *)

EDX ← SignExtend(EAX);
FI;

Flags Affected
None.

Exceptions (All Operating Modes)
None.

41.16 CWDE—Convert Word to Doubleword

See entry for CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword.

